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Abstract. The time-dependent properties of a finite number of classical charged particles
moving in two dimensions (2D) and which are confined by a parabolic potential are studied. In
equilibrium those particles arrange themselves in shells. Using molecular dynamics we obtain
the temperature dependence of the transition rate for particles jumping between shells and the
transition rate for intershell rotation. The temperature dependence of the velocity autocorrelation
function is studied. We relate the behaviour of these quantities to the melting of the system.
The results of our numerical simulation are compared with those from classical rate theory. The
influence of a magnetic field on the particle motion and on the rate of jumps is also investigated.

1. Introduction

Currently, a lot of theoretical and experimental investigations are devoted to mesoscopic
systems consisting of a finite number of particles. A cluster of charged particles, called an
‘artificial atom’ confined by an external potential is an example of such a system. Although
most of such systems are inherently quantum mechanical they often exhibit many classical
mechanical features. Here we will limit ourselves to pure classical considerations neglecting
any quantum nature of the particles. For two-dimensional (2D) clusters of charged particles
which are confined by a parabolic potential, the ordered structures consist of particles which
are arranged in shells. A Mendeleev type of table was constructed in reference [1] for these
‘classical atoms’. The melting temperature and the excitation spectrum of the normal modes
were obtained in references [2, 3]. The purpose of the present paper is to study the time
evolution of this system, or equivalently the Fourier transform of it, and to correlate it with
the ordered and liquid states of this finite system.

The melting of the ordered 2D cluster was considered by Lozovik and co-authors in
references [4, 5] using the method of molecular dynamics. These authors have found that a
cluster consisting of not too many particles (N < 50) does not have a well defined melting
temperature, and that the transition for intershell diffusion occurs at a higher temperature
than the one for intershell rotational diffusion. Bedanov and Peeters [1] have used Monte
Carlo simulations to obtain the temperature dependence of the variation in the mean radial
and axial displacements of particles from their equilibrium position and the square intershell
deviations. Analysing the computed mean square displacement with the Lindemann criterion
these authors were able to define two different melting temperatures.
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There are a number of problems associated with the calculation of the melting
temperature in the case of finite systems:

(1) rates of intershell rotation and intershell jumps have finite values for any temperature,
even though they decrease exponentially with decreasing temperature;

(2) for a cluster ofN particles the mean square displacement1 = N−1∑N
i=1(〈ri2〉 −

〈ri〉2) reaches a finite non-zero value after some time which is set by the scale of the
vibration frequency of the cluster.

Then as a result of intershell rotation or of transitions of the particles between shells,
the mean square displacement first starts to grow linearly with time and then for large
times achieves a final value which is determined by the size of the system. Although
the particle motion which we have observed is diffusive in nature, it is obvious that the
self-diffusion coefficientD = limt→∞1(t)/t is zero for any finite system. Therefore the
standard approach for calculating the diffusion coefficient and the mean square displacement
is only applicable for a finite time interval [6]. Indeed, fort →∞ the diffusion coefficient
tends to zero while the latter grows as function of time and exceeds the mean interparticle
distance. Because, for axial symmetric external potentials, the frequencies of the different
normal modes can change by orders of magnitude as was found in reference [2], there are
additional difficulties in defining a time interval in which the self-diffusion coefficient and
the mean square displacement can be reliably defined.

Because of the above difficulties, we present in this paper an alternative method for
obtaining information on melting by using rates of intershell rotation and intershell jumps
as the characteristics of the non-zero-temperature particle motion in such finite systems. We
have obtained the temperature dependence of the rate of intershell rotation and intershell
jumps for clusters with different numbers of particles. We also evaluated the influence
of a magnetic field on the particle motion and explored the behaviour of the velocity
autocorrelation function for different temperatures.

The paper is organized as follows. In section 2, we state the problem and describe
our simulation method. Section 3 is devoted to the results of our simulation for the rate of
intershell rotation. In section 4, the mechanism for the intershell jump rate is investigated. In
section 5, we consider the behaviour of the velocity autocorrelation function. The influence
of a magnetic field on the particle motion is investigated in section 6. The conclusions of
the present work are given in section 7.

2. The model system and numerical approach

To study the time dependence of a system consisting of 2D charged particles which are
confined by a parabolic potential we use the numerical simulation technique of molecular
dynamics. Using dimensionless units, we can write the system of Newton equations which
govern the time evolution of the particles in our cluster in the presence of a magnetic field
B (taken along thez-axis) as

∂2ri

∂t2
= −∂U(ri )

∂ri
+ ∂ri
∂t
× ωc (1)

where

U =
N∑

i>j=1

1

|ri − rj | +
N∑
i=1

ri
2 (2)
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is the total potential energy. Here the time is measured in units of
√

2/ω0, the frequency in
units ofω0/

√
2, the distance in units of(2q2/mεω2

0)
−1/3, and the energy and temperature

in units of (mω2
0q

4/2ε2)1/3, whereω0 is the vibration frequency of a single particle in
the parabolic confinement potential,m is the mass of the particle,ωc = (0, 0, ωc) where
ωc = qB/mc is the cyclotron frequency,q is the particle charge, andε is the static dielectric
constant of the medium that the particles are moving in.

In a strong magnetic field the cyclotron frequency exceeds the typical vibration freq-
uency of a particle near its equilibrium position. In this case, common schemes solving
the Newton equations (for example, see reference [7]) can no longer be used, because in
such a case the time step will be determined by the cyclotron frequency. Therefore, in
the present paper the construction of a finite-difference scheme is based on the use of the
explicit solutions of the Newton equations for a constant force (see e.g. reference [8]) in a
uniform magnetic field. Because we consider uniform magnetic fields the accuracy of the
algorithm will therefore be independent of the cyclotron frequency. The force which acts
on the particle is defined by the predictor–corrector method. The time step is determined
from the condition that the total energy may not change by more than 0.1% during the
simulation.

We consider mainly the motion of the particles at non-zero temperature. The initial
conditions for the system of equations (1) were found in the following way. An initial
particle configuration was chosen as the ground state (see reference [2]). Then we executed
104–105 steps of the standard Metropolis algorithm [9] at some temperatureT to allow
the system to approach its equilibrium state. Then we determined the initial values for
the velocity of the particlesv′i by using the Maxwellian probability distributionf (v′i ) =
(1/2πT ) exp(−v′2i /2T ) in combination with a random-number generator. Furthermore we
used the transformation

vi = v′i + ri ×
∑
i

[ri × v′i ]
/∑

i

ri
2

in order to exclude uniform rotations of the cluster as a whole. Consequently, the particle
motion is calculated for fixed energy using the method of molecular dynamics. This gives
us the time evolution of the particle coordinates and its velocities. For the averages over
the energy, about 40–60 initial configurations were generated in phase space. The statistical
error resulting from the use of a finite number of initial configurations will be indicated
explicitly in the presentation of our numerical results.

For the zero-magnetic-field case, oscillations of the cluster as a whole with the char-
acteristic frequencyω = √2≈ 1.414 (i.e. the centre-of-mass oscillations; see reference [2])
do not couple with any other mode, and therefore will be taken out. For example, when
we calculate the velocity autocorrelation function we give the velocity coordinatesvi with
reference to the centre-of-mass velocity

vm = 1

N

∑
i

vi

and use the notation1vi (t) = vi (t) − vm(t). We calculated the velocity autocorrelation
function

Z̃t (τ ) =
〈∑

i

1vi (t) ·1vi (t + τ)
〉/〈∑

i

1vi (t)
2

〉
(3)

and its components for radial motion

Z̃r (τ ) =
〈∑

i

1vi,r (t)1vi,r (t + τ)
〉/〈∑

i

1vi,r (t)
2

〉
vi,r = (vi · ri )/|ri | (4)
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and axial motion

Z̃ϕ(τ ) =
〈∑

i

1vi,ϕ(t)1vi,ϕ(t + τ)
〉/〈∑

i

1v2
i,ϕ

〉
vi,ϕ = |vi × ri |/|ri |. (5)

The parentheses〈· · ·〉 denote the averaging over timet . The spectrum of the velocity
autocorrelation function is then defined as the Fourier transform

Zα(ω) = 2
∫ ∞

0
cos(ωτ)Z̃α(τ ) dτ. (6)

3. Intershell rotation

In reference [2] an approximate Hamiltonian was obtained which was able to describe the
intershell rotations:

H(ϕ̇, ϕ) = 1

2
R2
? ϕ̇

2+ 1

2
U?

(
1− cos

(
2πϕ

ϕ?

))
(7)

whereU? is the barrier height, andR?, ϕ? are defined below. The variableϕ measures the
angle of rotation of the shell with maximum angular velocity. For clusters with two shells,

R? =
√
N1R

2
1γ ϕ? = θ/γ γ =

(
1+ N1R

2
1

N2R
2
2

)
whereR1, R2 are the radii of the shells considered,N1, N2 are the number of particles
within each shell, andθ = 2π/I , whereI is an integer, which is the minimal divisor of
the numbersN1, N2. In the case in which the number of shells is>3, the values for the
parametersR?, ϕ? are given in table 1 of reference [2]. Solving Hamiltonian (7) allows us
to obtain the energy dependence of the angular velocity for intershell rotation:

Vϕ =
[∫ 2π

0

dϕ

2πϕ̇

]−1

= π
√
E/2

R?K(
√
U?/E)

(8)

whereK(x) ≈ π/(1+√1− x2) is the complete elliptic integral. To analyse the region of
applicability of these expressions and to check the validity of the method used to obtain
the intershell rotation barriersU?, we also simulated the particle motion by the method of
molecular dynamics. The initial conditions in this case were found to be as follows:

ri (t = 0) = ri,g

vi (t = 0) =
√

2EAi,2+
2N∑
j=3

ηjAi,j

where ri,g are the coordinates of the particles in the ground state, andAi,j are the
eigenvectors of the dynamical matrix

Hαβ,ij = ∂2U

∂rα,i ∂rβ,j
α, β = x, y i, j = 1, . . . , N (9)

which describe the different eigenmodes of the system. The eigenfrequencies and eigen-
vectors of this dynamical matrix were obtained in reference [2]. Here we consider the
relation between the angular velocity and the kinetic energyE of the normal mode for
intershell rotation. The coefficientsηj in the expression for the initial velocity were taken
randomly from the Maxwellian distributionf (ηj ) =

√
1/2πT exp(−η2

j /2T ).
The energy dependence of the angular velocity corresponding to the normal mode with

the smallest eigenvalue is depicted in figure 1 for two different temperaturesT = 0
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Figure 1. The angular velocity as a function of the energy of the cluster for different numbers
of particles in the cluster: (a)N = 9, (b) N = 19, (c)N = 50 and (d)N = 80. The solid
curve is derived from the analytical expression (8), and the triangles and circles are the results
obtained by using the molecular dynamics method forT = 0 andT = U?/2, respectively. The
angular velocity is in units ofω0/

√
2 and the energy in units of(mω2

0q
4/2ε2)1/3.

(triangles) andU∗/2 (circles). As an example we tookN = 9, 19, 50, 80 where the
minimal eigenfrequenciesω2 = ωmin were given in reference [2] and are 0.1268, 0.667,
0.0754, 0.0184, respectively. The corresponding barrier heights for intershell rotationU?
are respectively 8.44× 10−5, 3.14× 10−2, 3.32× 10−3, 1.19× 10−5. We found that the
intershell rotation barriers obtained earlier [2] agree with the ones calculated by the present
method of molecular dynamics. Note that for clusters with small barrier heightU?, i.e. for
N = 9, 80, the simple model (7) which leads to the angular velocity (8) predicts the correct
behaviour (full curves in figure 1). For configurations with a higher intershell rotation
barrier height, the angular velocity is smaller than that given by the analytical expression
(8). Such configurations correspond to ground states with high symmetry, in which the
number of particles in the outer shell is a multiple of the number of particles in the inner
shell. These are the so-calledmagic numberclusters [2]. In this case we found that at
non-zero temperature, rotation of the shell has already started at an energy which is less
than the barrier height predicted by relation (8). This is attributed toanharmonicity effects,
which become more important at higher energies. Note that the energy scales of figures
1(a), 1(d) and figures 1(b), 1(c) differ by at least an order of magnitude. As is apparent from
figures 1(b), 1(c) forE > U?, the angular velocity is less than that predicted by relation
(8). This effect can be ascribed to the importance of the radial distortion of the shell for
angular rotations in the case of large energy, i.e. large temperatures.
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Figure 2. The intershell rotation rate or angular jump rate. The solid curves are the results
derived from expression (10), and the dashed curves are obtained by using classical rate theory.
The solid circles are the results from the present molecular dynamics study.

An alternative approach for analysing the behaviour of the cluster for non-zero
temperatures is based on the average rotation frequency

Ra = lim
t→∞〈Na(t)/t〉

for the shell with maximal angular velocity. In the above equation,Na is the number of
rotations over the angleϕ?, and the averaging is carried out over the initial states of the
cluster. ThusRa is nothing but the angular jump rate for jumps over an angleϕ?. Using
our analytic model (7) we can calculate the angular jump rate by averaging the rotation
velocity (8) over the Gibbs distribution with the Hamiltonian (7):

Ra =
(∫

dϕ̇ dϕ Vϕ exp(−H(ϕ̇, ϕ)/T )
)/(∫

dϕ̇ dϕ exp(−H(ϕ̇, ϕ)/T )
)
. (10)

The integrals in equation (10) were performed numerically using an analytical approximation
for the complete elliptic integral. From classical rate theory (see e.g. reference [10]) we
have the following relation:

Ra = ωa

π
exp

(
−U?
T

)
(11)

where

ωa =
2N∏
i=2

ωi

/ 2N∏
i=3

ω?i .

The eigenfrequenciesωi refer to the eigenfrequencies of the normal modes of the ground
state, whileω?i corresponds to the eigenfrequencies of the state with maximum potential
energy for intershell rotation. The latter is unstable and thereforeω?2 is imaginary, while
the otherω?i are real. The frequenciesω?i were determined using the method of reference
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[2]. We found that the valueωa is slightly different from the eigenfrequency of the normal
modeω2 which describes intershell rotation for a cluster in the ground state, e.g. forN =
9, 19, 28 the ratio isω2/ωa ≈ 0.97, 0.87, 1.07 respectively. In figure 2, a comparison is
made between the expressions (10) (solid curves) and (11) (dashed curves) for the value
of Ra as function of temperature. The numerical results (symbols in figure 2) are obtained
by the method of molecular dynamics. Note that for clusters with low barrier heights
(e.g.U? ≈ 8.44× 10−5, 8.31× 10−5 for N = 9, 28 respectively) for intershell rotation,
relation (10) agrees with the results of our molecular dynamics study within the statistical
error. The results from classical rate theory (dashed curves in figure 2) underestimate the
intershell rotation rate. For clusters with high energy barrier heights for intershell rotation
(e.g.N = 19 in figure 2), expressions (10) and (11) lead to smaller values forRa in the
temperature rangeT < U? (≈0.031 for N = 19). This agrees with our previous study
[2] which shows that for such cases the analysis of the behaviour of the harmonic normal
modes gives a larger deviation from the pure numerical simulation, which is a consequence
of the anharmonicity of the vibrations.

Table 1. The barrier heights for intershell diffusion obtained from the Monte Carlo simulations
(Um) for different numbers of particles (N ).

N 5 6 9 10 12 14 15 16 17 18 19 20

Um 0.149 0.134 0.064 0.047 0.057 0.065 0.141 0.084 0.067 0.134 0.064 0.145

Figure 3. (a) and (b) depict trajectories corresponding to transitions from the ground state to a
metastable state. (c) and (d) are examples of intershell diffusion without change of the numbers
of particles in the shells.

4. Intershell diffusion

With increasing number of particlesN in the cluster, an increasing number of metastable
states are found with energy very close to theT = 0 ground-state energy. Between these
metastable states and the actual ground state of the system there are potential barriers. At
non-zero temperature the particles can borrow thermal energy in order to hop between these
states. ForN not too large, the lowest of these potential barriers is the barrier height for
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intershell diffusion. For the cluster with six particles, the barrier height (Um ≈ 0.135) for
transition from the ground state (1, 5) to the metastable state (6) was found in reference [11].
For this case the barrier was found by slowly moving the central particle to the periphery
of the cluster. At each position of this particle the positions of all of the remaining particles
were calculated by the Monte Carlo method from the condition of minimal energy. Here
we follow a slightly different approach which is also suitable for treating large systems.
Trajectories of the particles making a transition from the ground state to the metastable
state were approximated by the polynomials

xi =
∑
k

ζx,ikt
k, yi =

∑
k

ζy,ikt
k t ∈ [0, 1]

where att = 0 the system is in the ground state and att = 1 we arrive in the metastable
state. Varyingt we calculate the maximum in the energy. This is the barrier height for
some specific path in configuration space. Using the Monte Carlo technique and the Metro-
polis algorithm we vary the coefficientsζx,ik, ζy,ik such that the minimal barrier height
is obtained, which we identify as the barrier for intershell diffusion. Examples of such
trajectories are plotted in figure 3 for differentN . The calculated barrier heights for clusters
with N = 5, . . . ,20 are given in table 1. For the cluster of reference [11] consisting of
six particles, we found the barrier heightUm ≈ 0.134 which essentially coincides with the
result of reference [11].

Figure 4. The time dependence of the radial position of a particular particle in a cluster with
twenty particles for two different temperaturesT . The two horizontal lines correspond to the
radii of the different shells.

The above definition of the barrier height is based on the zero-temperature properties of
the cluster. Now we consider an alternative approach in which we study the time dependence
of the radial position (

√
x2+ y2) of the particles at some non-zero temperature. In figure 4

we show the radial position, as a function of time, of a certain particle for a cluster with
N = 20 for two different temperatures. At low temperature the particle oscillates around
its equilibrium position, which coincides with the characteristic radius of a certain shell of
the cluster in its ground state. After some large time interval the particle can jump to its
neighbouring shell. At large temperatures the overall picture of the motion remains the
same but the frequency of jumps between the two shells is increased and the amplitude
of the particle oscillation within one shell is much larger. We found that the total number
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Figure 5. The radial jump rate for clusters with different numbers of particles. The solid
lines are least-squares fits to an Arrhenius law and the symbols are the results of our molecular
dynamics study. In the inset the reduced radial jump rate (Rr/N?) in the high-temperature
region is shown for different numbers of particles in the cluster. The solid line is the fit to an
Arrhenius law.

of radial jumpsNr of all of the particles in a cluster increases linearly with time. This is
attributed to the diffusion nature of the particle motion. Therefore, we defined the rate of
intershell jumps

Rr = lim
t→∞

〈
Nr(t)

t

〉
where the averaging is carried out over the initial states of the cluster. This quantity is
shown in figure 5 as a function of the inverse temperature. These numerical results can be
well approximated by the Arrhenius law

Rr = Are−Ur/T (12)

where the parameterAr and the barrier heightUr may be different in regions of low
(T < Tr ) and high (T > Tr ) temperatures. For clusters withN = 9, 20, 30, 80 the critical
temperaturesTr are respectively 0.0188, 0.0299, 0.0100, 0.0107 which are comparable in
magnitude to the melting temperatures found in [2]. In the low-temperature region we
compare the results of this new definition with those from the above Monte Carlo analysis.
For the cluster withN = 9 we foundUr ≈ 0.060 which agrees approximately with our
earlier determination (see table 1). But for the cluster withN = 20, the barrier height for
intershell diffusion (Ur ≈ 0.118) is less than the height of the lowest barrier between the
metastable and the ground stateUm = 0.145. The same conclusion holds for clusters with
N = 30, 80 where the barrier heights for intershell diffusion are respectivelyUr = 0.023
and Ur = 0.033. This tells us that for large clusters, intershell diffusion is determined
by the simultaneous transition of two particles between two shells without a change in the
occupancy of the shells, while for small clusters intershell diffusion can rather be described
as transitions between the ground state and metastable states. Because this mechanism is
responsible for the melting of the ring structure of the classical cluster, the microscopic
classical melting behaviours for smallN and largeN are different.
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Figures 3(a), 3(b) show the transitions of the clusters withN = 9 (a) andN = 20
(b) from the ground states (2, 7), (1, 7, 12) to the metastable states (1, 8), (1, 6, 13)
respectively. Figures 3(c), 3(d) show the simultaneous transition of two particles from one
shell to a neighbouring one for a cluster withN = 20 without a change of the occupancy
of each of the shells. Because the particles are identical, the state is not altered after such
a transition. We have tried to obtain the barrier height using the Monte Carlo technique
described above by taking initial and final states of the cluster corresponding to transitions
which do not change the number of particles on the different shells. This led for the
case of figures 3(c), 3(d) to the barrier heights 0.210 and 0.149. Notice that also in this
case for the cluster withN = 20 particles the barrier heights are higher than the ones
found by the method of molecular dynamics which indicates an appreciable softening of the
barrier due to temperature effects. We think that the mechanism behind this is the energy
exchange between different modes which plays an essential role in the transition process,
and consequently the particle trajectories have a more complicated form than found using the
above Monte Carlo simulation. Figure 3(d) indicates vortex-like motion, which corresponds
to the rotation of a pentagon which is located at the periphery. As found from our computer
simulations, the barrier heights corresponding to rotations of polygons are rather insensitive
to the numbers of particles which are involved. Consequently, the number of possible
collective motions of the particles which involve intershell diffusion increases very fast
with the number of particles in the cluster. This is why for large clusters the definition of a
simple energy barrier and the use of classical rate theory are no longer appropriate because
of the presence of an almost continuous spectrum of excitations for intershell diffusion.

Figure 6. The radial distribution of the particle density for a cluster with 20 particles at two
different temperatures.

For low temperatures, the barrier to intershell diffusion is determined by the number of
particles within the cluster. If the temperature exceeds some critical valueTr , the barrier
heights for the different clusters become approximately equal. The value of the critical
temperatureTr is smaller than the cluster melting temperature which was obtained previously
using the Lindemann criterion [2]. The factorAr in expression (12) rises as the number of
particles increases. Let us assume that forT > Tr the energy barrier height for diffusion is
the same for all shells within the cluster. Then the rate of intershell diffusion is proportional
to the effective number of particlesN? = N−Nout/2, whereNout is the number of particles
in the most outer shell, where jumps can only be in one direction. As one can see from the
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inset of figure 5, in the high-temperature range the rate of radial jumps per particle,Rr/N?,
depends only very weakly on the total number of particles. The resulting energy barrier
height forT > Tr is approximately equal to 8.9× 10−2 and practicallyindependentof the
number of particles. Thus in the low-temperature range the energy barrier height for radial
jumps attains a universal value.

Vanishing of the large maxima in the radial particle density is a signature of the transition
from the crystalline-like state to the liquid-like state (see figure 6). Note that even in the
liquid state some shell-like structure still remains although there is already a large probability
of finding the particle between the shells. Thus the liquid state is not homogeneous but
its density is radially modulated. It is interesting that during the phase transition for radial
melting the barrier height for intershell diffusion increases or decreases, depending on the
number of particles in the cluster (see figure 5). For large clusters and at low temperature
the transition occurs generally between the outer shells, for which the energy barrier for
the rotation of a part of the cluster is smaller. Therefore the prefactorAr in equation (12)
grows in this case when the cluster melts and all particles start to take part in the diffusion
process.

Figure 7. The frequency spectrum of the velocity autocorrelation function for a cluster with
nine particles for different temperatures. The dotted lines correspond to the eigenfrequencies at
zero temperature. The frequency is in units ofω0/

√
2.

5. The velocity autocorrelation function

In the two previous sections we studied the angular and radial jump rates for particle motion
in a classical atom. Now we will follow the complete time-dependent motion of the different
particles. We therefore calculate the spectrum of the velocity autocorrelation function (3)
and investigate whether we can find any signature of melting. For zero temperature such
spectra consist of a series of delta functions which are located at the frequencies of the
excitation spectrum, which were calculated in reference [2]. With increasing temperature
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these delta functions broaden and at sufficiently high temperature a continuous spectrum
is found (see figure 7 forN = 9). The dotted vertical lines in figure 7(a) correspond to
the zero-temperature case. Notice that for low temperature (see figure 7(a)) the effect of
temperature is twofold: it broadens the zero-temperature delta functions in the velocity
autocorrelation function and it couples those frequencies which differ very little with each
other in energy.

Figure 8. The spectra of the velocity autocorrelation functions for clusters with two different
numbers of particles and for two different temperatures. The position of theT = 0 eigen-
frequencies are indicated by the vertical lines at the tops of the figures.

For clusters with a small barrier height for intershell rotation, anharmonicity is only
essential for the normal mode with the lowest eigenfrequencyω2, which is the frequency
for angular vibrations. Therefore, in the temperature rangeU? � T � T?, whereT? is
the temperature for cluster melting, there is a region in the spectrum 0< ω < ω2 (see the
low-frequency behaviour in figure 7(a)) where the peak corresponds to relative rotations of
the shells. In figure 8 similar plots are made for larger clusters. The positions of theT = 0
eigenfrequencies are indicated by the vertical bars at the tops of the figures. There is no
sudden change in the spectrum when we cross the melting region which is similar to what
was observed for 3D clusters [5]. Notice also that there are a number of peaks which stay
rather sharp even at relatively large temperature. The reason for this is that the excitations
with such frequencies couple only very weakly to the other frequencies. An example of
such a frequency is the breathing mode in figure 8(a) which hasω = √6 ≈ 2.45 at zero
temperature. In appendix A we derive analytically the eigenfrequency of this mode, for an
arbitrary number of particles in the cluster, from which it is apparent that there is almost
no coupling with the other harmonic modes of the cluster.

Fluctuations in the particle motion cause the overlap between neighbouring levels and
result in the formation of a continuous spectrum in the autocorrelation function. At low
temperatures this becomes first apparent in the frequency range between eigenmodes which
are close in frequency (see figure 7(a)). With increasing number of particles, the difference
in eigenfrequencies reduces and chaotization of the motion occurs at lower temperature.
This phenomenon is already apparent before melting occurs in the case of large clusters
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(see figure 8 forN = 80 andT = 0.001). For large clusters the existence of two broad
maxima in the excitation spectrum is related to the excitation of acoustic and plasma-type
waves with different characteristic frequencies (see e.g. reference [2]). This is analogous
to an infinite Wigner crystal [12–14] where such acoustic and optical modes are present
in the phonon spectrum. The density of the phonon states of the Wigner crystal at zero
frequency is proportional to the self-diffusion coefficient [7] which in a finite system has
to be exactly equal to zero. Therefore, at large temperatures and with increasing frequency
the valueZ(ω) abruptly increases from zero atω = 0 to some finite value forω 6= 0 which
further weakly depends on frequency (see e.g. figure 7(b) forN = 9 andT = 0.1).

Figure 9. The spectra of the (a) radial, (b) angular, and (c) total velocity autocorrelation
functions for a cluster with nine particles for a fixed temperatureT = 0.01.

Because of the circular symmetry of our system we expect a large difference between the
angular and the radial response (see figure 9). This is also expected from the fact that angular
melting occurs at a lower temperature than radial melting. For sufficiently large cluster sizes,
we found that this distinction disappears, which agrees with our previous observation [1]
that for such a system the angular and radial melting temperatures coincide. Notice that
Zt is not simply the sum ofZϕ and Zr because cross-terms are present. Furthermore,
Zr(0) = 0 while Zϕ(0) 6= 0 due to intershell rotation. In figure 9(c) we find two very
sharp peaks inZt at ω∗1 ≈ 2.427 andω∗2 ≈ 2.477 which are a result of the splitting of the
breathing mode inZr which occurs atω = √6 = 2.449. This splitting occurs because of
the mixing with intershell rotation (i.e. the lowest non-zero frequencyω2 = 0.067) which
occurs with the small frequency1ω = ω∗2 − ω∗1 ≈ 0.050.

6. The influence of a magnetic field

It is known [15] that in a classical system an external magnetic field does not alter the
statistical properties of the system, and consequently the melting temperatures will be
insensitive to the magnetic field strength. But on the other hand, the character of the
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Figure 10. The excitation spectra of two clusters with differentN as functions of external
magnetic field.

motion of the particles is altered significantly when the cyclotron frequency is larger than
the eigenfrequencies of the system. The spectrum of an infinite 2D Wigner crystal in a
magnetic field was obtained in [12, 13]. Here we will be interested in finite systems. For
the definition of the spectrum of a finite system in a magnetic field, we Fourier transform
the Newton equations

H̃αβ,ijQβ,j = (ω2δαβ,ij −Hαβ,ij + iωωcEαβδij )Qβ,j = 0

whereEαβz is the Levi–Civita tensor,δij andδαβ,ij are unit matrices, andQβ,j is the particle
displacement from its equilibrium position. To determine the spectrum we calculate the roots
of the determinant of the Hermitian matrix̃Hαβ,ij . The determinant was calculated after
reducing the matrix to a triangular form using Gaussian elimination. The general qualitative
behaviours of the magnetic field dependence of the excitation spectrum are very similar for
clusters with different numbers of particles (figure 10). As in an infinite system [12], there
are two branches in the spectrum which contain the same number of eigenfrequencies. The
high-frequency branch describes the orbital particle motion with frequency near the cyclotron
frequency. The low-frequency branch corresponds to particle drift with a frequency which is
inversely proportional to the magnitude of the magnetic field. For completeness we mention
that for a classical dot in the liquid state the magnetoplasma excitations in harmonic and
anharmonic electron dots were considered in references [16, 17].

Typical trajectories of the particles in a dot withN = 9 at a temperatureT = 0.06
are shown in figure 11. The influence of the magnetic field is clearly apparent when
we compare figure 11(a) with figure 11(b). With increasing magnetic field the difference
between the eigenfrequencies of each of the branches of the spectrum decreases considerably.
Therefore, already at low temperature the spectrum of the velocity autocorrelation function
has become continuous for each branch (figure 12). At the same time there is some small
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Figure 11. The trajectories of particles at a temperatureT = 0.06 in the presence and the
absence of an external magnetic field forN = 9.

energy exchange between the two branches which is due to anharmonicity effects.
In a strong magnetic field the main part of the kinetic energy belongs to the orbital

particle motion. Therefore in expressions (11) and (12) which describe the rate of intershell
rotation and intershell diffusion, the prefactors (ωa/π , Ar ) have to be reduced while the
energy barrier height does not depend on the magnetic field strength. The drift velocity of
the centre of the orbit is determined by the expression

vd,i = −ωc × Fi/ω2
c

whereFi = −∂U/∂ri is the force acting on particlei. In the harmonic approximation we
have

Fi = −
2N∑
j=1

ω2
j qjAi,j

where theAi,j are the eigenvectors of the dynamical matrix (9). Using the Gibbs distribution
for the amplitude of the normal modesqj :

f (qj ) =
√

ωj

2πT
exp

(
−ω

2
j q

2
j

2T

)
(13)

we obtain the expression for the mean energy of the drift of the particles:

Ud = 1

N

N∑
i=1

v2
d,i

2
= T

Nω2
c

2N∑
i=1

ω2
i .
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Figure 12. The spectrum of the velocity radial (Zr ), angular (Zφ ), and total (Zt ) autocorrelation
functions for a cluster with nine particles in the presence of a fixed magnetic field and for four
different temperatures: (a)T = 0.001, (b)T = 0.01, (c)T = 0.1, and (d)T = 1.

We also investigated the influence of a magnetic field on the intershell rotation rate and
the intershell diffusion rate within the framework of classical rate theory. It is necessary
to determine first the absolute value of the drift velocity at the pointri,m for the state
with maximum potential energy. Methods of defining this point for intershell diffusion
were described above. Diagonalizing the dynamical matrix (9) by the Householder method
we obtain eigenvalues and eigenvectors at the pointri,m. The eigenvectorAi,1 having
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Figure 13. The angular, (a), (b), and radial, (c), (d), jump rates for a cluster with nine, (a), (b),
(c), and twenty, (d), particles and for different temperatures. The solid curves are the results
obtained by using expression (14), and the points are the results from our molecular dynamics
study.

an imaginary eigenvalue describes the transition from one equilibrium state to another
through the maximum of the potential barrier. All of the remaining eigenvalues are real.
The eigenvectors corresponding toAi,k>1 are orthogonal to those corresponding toAi,1 and
describe the vibration of the particles in the vicinity of the energy maximum. The projection
of the drift velocity onto the vectorAi,1 is given by

Vd = −ω−1
c

2∑
α=1

2∑
β=1

N∑
i=1

2N∑
k=2

Aα,i1Eαβzω
2
kqkAβ,ik.

To determine the mean value of|Vd |, integrals over normal coordinates which are distributed
according to the probability distribution (13) were used in a Monte Carlo simulation. The
ratio Vd/Vt = ω?/ωc which is the drift velocity over the thermal velocityVt =

√
T/2π

does not depend on temperature and is inversely proportional to the magnetic field. The
excitation spectrum of the normal modes of the transition state corresponds to the potential
energy maxima, which do not differ significantly with the ground-state spectrum. Therefore,
the parametersω? for intershell rotation (N = 9, ω? ≈ 1.25) and intershell diffusion
(N = 9, ω? ≈ 1.19) are approximately equal. Since the amplitudes of normal modes are
inversely proportional to their frequencies, the characteristic frequencyω? corresponds to
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the arithmetic mean value of the frequencies of the normal modes. For a weak magnetic
field it is not difficult to show that the change of velocity of the particles is proportional
to the square of the cyclotron frequency. Therefore to analyse the influence of a magnetic
field on the intershell diffusion rate and the intershell rotation rate we used the approximate
formula

RH = R(H = 0)
ω?√

ω2
? + ω2

c

(14)

whereR(H = 0) is calculated in zero magnetic field. Expression (14) is compared in
figure 13 with the results of our molecular dynamics study. Note that in ionized gases
the diffusion coefficient in a strong magnetic field changes inversely proportionally to the
cyclotron frequency because diffusion is determined by jumps from one cyclotron orbit to
another one. In the case of a continuous medium, a particle is in the field of its neighbouring
particles, and the decrease of the diffusion coefficient is connected to the reduction of the
characteristic value of the drift velocity.

7. Conclusion

We have presented the results of a molecular dynamics study of the motion of charged
classical particles in a finite 2D system, confined by a parabolic potential. The intershell
rotation rate and intershell diffusion rate were obtained. The temperature dependence of
the diffusion rate is described by an Arrhenius law. In the low-temperature region, when
the system is in the crystalline state, the energy barrier height depends on the number of
particles in the cluster. For large clusters, diffusion is determined by the simultaneous
transition of two particles from one shell to a neighbouring one without any change in the
local density. At the periphery of the cluster, rotations of polygons of particles are possible.
This process has a small potential barrier height and therefore is favoured. In the liquid-like
state, probabilities for intershell jumps are practically independent of the effective number of
particles in the cluster. When the cluster melts, the energy barrier height can either increase
or decrease, depending crucially on the number of particles in the cluster. We also found
that the velocity autocorrelation function does not exhibit any clear signature of the melting
transition. An external magnetic field changes only the prefactor in the relation between the
rate of jumps and temperature. In a strong magnetic field, the rates of intershell rotation
and intershell diffusion change inversely proportionally to the cyclotron frequency.
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Appendix A

Here we will derive the eigenfrequency corresponding to the breathing mode in the case
in which an arbitrary external magnetic field is applied perpendicularly to the system. Let
M = ∑

i ri × vi be the total angular momentum, wherevi = ∂ri/∂t is the velocity of
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particle i. Notice that for our system (1) the vector

M + 1

2
ωc
∑
i

r2
i =M0 (A1)

is an integral of motion. Using total energy conservationE = U + T , whereU is the
potential energy, andT =∑i v

2
i /2 is the kinetic energy, the equation for the mean square

radiusR =∑i r
2
i /N can be written as

∂2R

∂t2
= −6R + 2(ωc ·M + E + T )/N. (A2)

Using condition (A1) one can reduce the above equation to

∂2R

∂t2
= −(6+ ω2

c )R + 2(ωc ·M0+ E + T )/N. (A3)

The above equation tells us that the eigenfrequency of the breathing mode is
ω = √

6+ ω2
c . At zero temperature,vi = 0, and consequentlyT = 0 andM = 0

which implies that the mean square radius becomesR = E/3N andM0 = ωcE/6. Since
the fluctuations of the total kinetic energy are small at finite temperature, there will be only
a weak coupling between the breathing mode and the other modes of the system.

The frequency of the above breathing mode was found first in reference [2]. Recently,
similar breathing modes were found in the quantum dot system in which case the frequency
may be different [18].
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